Le Data Management englobe tous les processus, outils et techniques de gestion de données. L’objectif est d’assurer la cohérence, la qualité et la sécurité des ensembles de données afin de pouvoir les exploiter. Découvrez tout ce que vous devez savoir : définition, techniques et outils, compétences requises, formations…
Pour les entreprises de tous les secteurs, les données sont désormais perçues comme une précieuse ressource. Elles peuvent être exploitées pour prendre de meilleures décisions, pour améliorer les campagnes marketing, pour réduire les coûts ou pour optimiser les processus.
Toutefois, pour être utilisées à bon escient, les données doivent être organisées correctement. Dans le cas contraire, une organisation risque d’être confrontée à des ensembles de données incohérents, à des problèmes de qualité des données ou à ce que l’on appelle des silos de données.
En outre, avec l’essor du Big Data, les entreprises doivent se conformer à des règlements toujours plus stricts concernant le traitement des données. En Europe, le RGPD impose de nombreuses contraintes visant à assurer la protection des données. Pour répondre à ces diverses problématiques, le » Data Management » est aujourd’hui indispensable.
Qu’est-ce que le Data Management ?
Le terme de Data Management désigne tout le processus visant à ingérer, à stocker, à organiser et à maintenir les données créées ou collectées par une entreprise. Ce concept englobe une large combinaison de fonctions visant à rendre les données exactes, disponibles et accessibles.
Selon le consortium DAMA International, le Data Management est » le développement et l’exécution d’architectures, de règles, de pratiques et de procédures visant à gérer les besoins en cycle de vie de l’information d’une entreprise de façon efficace « .
Il s’agit donc d’un champ pluridisciplinaire, visant à garder les données organisées d’une manière pratique et exploitable. Le but est que les données soient exactes, cohérentes, accessibles et sécurisées.
À quoi sert le Data Management ?
Le Data Management permet d’éliminer les duplicatas de données et de standardiser leur format. En effet, les données proviennent de différentes sources et peuvent être de différents types. Elles ne sont pas non plus collectées de la même manière par chaque système.
C’est ce qui crée des silos de données, avec des informations séparées entre les différents départements de l’organisation. Le Data Management permet de mettre un terme à ces silos.
Par ailleurs, le Data Management sert aussi à poser les fondations requises pour l’analyse de données. Sans gestion des données, l’analyse n’est pas fiable voire tout bonnement impossible. Il est impératif de veiller à la qualité des données.
Une stratégie de Data Management bien exécutée peut apporter de nombreux avantages à l’entreprise face à ses concurrents. Elle permet d’améliorer l’efficacité opérationnelle et la prise de meilleures décisions.
En gérant correctement leurs données, les organisations peuvent aussi devenir plus agiles, détecter les tendances du marché et prendre avantage de nouvelles opportunités plus rapidement. En outre, la gestion de données permet d’éviter les fuites, les problèmes liés à la confidentialité ou à la conformité potentiellement très coûteux et nocifs pour la réputation d’une entreprise.
Les différentes tâches de Data Management
Le Data Management englobe de nombreuses disciplines. La Data Governance ou gouvernance des données est la planification des différents aspects de la gestion de données. Elle vise notamment à assurer la disponibilité, l’utilisabilité, la cohérence, l’intégrité et la sécurité des données.
L’architecture des données concerne la structure générale des données d’une organisation et la façon dont elle s’intègre à l’architecture générale de l’entreprise. La modélisation des données est la conception, le testing et la maintenance des systèmes analytiques.
Le stockage des données fait également partie du champ du Data Management, au même titre que leur sécurité. Les données doivent aussi être intégrées et inter-opérables, ce qui passe par leur transformation dans une forme structurée.
Le Data Warehousing et la Business Intelligence, visant à analyser les données pour assister la prise de décision, fait aussi partie du Data Management. Les métadonnées doivent aussi être gérées.
Enfin, il est impératif de veiller à la qualité des données via différentes pratiques de surveillance et de traitement. Tous ces différents éléments sont interdépendants et doivent être inclus dans un modèle de Data Management complet.
Les outils et techniques de Data Management
Il existe une large variété de technologies, d’outils et de techniques pouvant être utilisés pour le Data Management. Citons tout d’abord les systèmes de gestion de base de données (DBMS) permettant le stockage et l’organisation des données. On distingue les bases de données relationnelles des bases de données » NoSQL « .
Pour la gestion du Big Data, on utilise généralement des environnements conçus autour de technologies open source comme le framework de traitement distribué Hadoop. D’autres outils comme le moteur de traitement Spark ou les plateformes de traitement en streaming Kafka, Flink et Storm viennent compléter le tableau. Les services Cloud de stockage objet comme Amazon S3 sont aussi utilisés.
Parmi les outils de Data Management, on peut aussi citer les Data Warehouses et les Data Lakes. De telles plateformes de dépôt de données peuvent être utilisées pour la gestion et l’analyse de données. On peut effectuer des requêtes pour interroger les données, ou encore procéder à l’analyse grâce à des modèles de Machine Learning.
Pour l’intégration de données, la technique la plus couramment employée est celle de l’ETL : extraction, transformation et chargement. Cette méthode consiste à extraire les données de leurs sources, à les convertir dans un format exploitable et à les charger vers une Data Warehouse ou autre système.
La Data Governance repose quant à elles sur différentes techniques. Il s’agit notamment de superviser les ensembles de données pour vérifier leur conformité. Pour assurer la qualité des données, on vérifie qu’elles ne comportent pas d’erreurs. Le Data Cleansing permet de corriger les éventuelles erreurs et de supprimer les données corrompues ou erronées.
Enfin, la modélisation de données consiste à créer des modèles conceptuels, logiques et physiques pour servir de documentation visuelle sur les ensembles de données et à les cartographier pour répondre aux besoins en traitement et en analyse. Il peut s’agir par exemple de diagrammes et de schémas.
Il existe des solutions entièrement dédiées au Data Management, regroupant de nombreuses fonctionnalités pour prendre en charge tous les différents aspects. En guise d’exemples, on peut citer SAS Data Management, Adobe Data Management Platform, Salesforce Audience Studio, IBM Data Management ou Oracle BlueKai.
Data Management : compétences requises et formations
https://www.youtube.com/watch?v=77IPyOcoX14
Le Data Management implique de nombreuses tâches. Pour les effectuer, il est nécessaire de disposer de solides compétences techniques.
Plusieurs rôles peuvent contribuer au Data Management. C’est le cas du Data Architect, du Data Modeler, de l’administrateur de base de données, des Data Engineers ou encore des analystes en qualité de données. Les Data Scientists et Data Analysts peuvent aussi prendre en charge certaines tâches de gestion.
Un professionnel en Data Management doit disposer de compétences en informatique, en programmation de bases de données, en Business Intelligence, en Cloud Computing, et en Machine Learning. Dans l’idéal, il est aussi doté de compétences personnelles favorisant la collaboration comme le sens de la communication et l’esprit d’innovation.
Le Data Management est aujourd’hui indispensable en entreprise afin d’exploiter les données et de saisir les opportunités offertes par le Big Data. Dans ce contexte, une formation en Data Management peut être extrêmement utile afin d’acquérir toutes les compétences requises et d’apprendre à manier les outils.
- Partager l'article :